If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-18+3x^2-3x=180
We move all terms to the left:
4x^2-18+3x^2-3x-(180)=0
We add all the numbers together, and all the variables
7x^2-3x-198=0
a = 7; b = -3; c = -198;
Δ = b2-4ac
Δ = -32-4·7·(-198)
Δ = 5553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5553}=\sqrt{9*617}=\sqrt{9}*\sqrt{617}=3\sqrt{617}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{617}}{2*7}=\frac{3-3\sqrt{617}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{617}}{2*7}=\frac{3+3\sqrt{617}}{14} $
| -179+15x=161+5x | | (4x^2-18)+(3x^2-3x)=180 | | .31=10/x | | 4x-5=5x+50 | | 3(m-18)=-15 | | 60=3(2+v) | | 2-u=-2 | | 1/2+m=3/4 | | 2x+9=x/2(x+24) | | 1-4z+8=12 | | (4x^2-18)(3x^2-3x)=90 | | -10=2(z+-6) | | (4x^2-18)(3x^2-3x)=180 | | 16x+14=90+6x+4 | | 2-5x+8x=6x+7-8x | | 9x+10+2x+52=360 | | 0=p+12/3 | | 7(7f+1)= | | 55-(7x-3)=x+2 | | 20x+35=18x+3 | | x=8π=π | | 55-7x-3=x+2 | | C(x)=x+4 | | 7.5x+5=8.3x+25 | | -0.66x+6=2x-22 | | 3y2=192;y= | | 20x=100(x-26.40) | | -4v=-2+14v+18 | | (2x-9)=100 | | m-4/7=2 | | 63x=24 | | M(x)=4(3-x) |